
I. INTRODUCTION

I This work was supported under Hong Kong RGC Grant HKUST6200/02E.

A. Background

Current researches on high-performance routers mainly fo
cus on efficient packet scheduling algorithms [1] or scalable
switching architecture [2], implicitly assuming underlying fast
~cce~s~ble buffers with enough capacities. However, in prac
tIce It IS not an easy task to build a buffer with both fast speed
and large capacity. With current available memory technolo
gies [3], neither the SRAM nor the DRAM alone meets both
requireme~ts simultaneously. The SRAM is fast enough with
an ac~~ss tIme of around 4 ns, but it cannot be built with large
capacItIes (SRAM's normal capacity is only a few MB) and is
power-hungry as well. The DRAM can be built with a larger
capacity, but its access time is too large, which is around 40 ns.
This dilemma may be largely due to the fact that current mem
ory technologies are mainly optimized for computers, not for
routers. Extensive research has been carried out for computer
buffers, where a portion of data/instructions in the memories
will be considerably reused many times (normally referred to
as the locality property [4]). Relatively less attention has been
paid to router buffers, where data/packets are seldom reused
and ~ach one is treated equally in terms of processing. The
localIty property enables computers to work well using a hier
archical cache-based buffering system, which consists of small
fast high-level memories (e.g., register and/or the SRAM) and
large slow low-level buffers (e.g., DRAM and/or hard disks).
However, the locality property does not hold for routers; each
packet comes into the memory and leaves sometime afterwards,
usually only once never to return.

A specific feature of router buffers imposes another diffi
culty. That is, router buffers are required to maintain multiple
flow queues for incoming packets. This feature is required in

Matching the Speed Gap between SRAM and DRAM
Feng Wang and Mounir Hamdi

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology

{fwang, hamdi}@cse.ust.hk

Abstract1_ With the constantly increasing Internet traffic, at least the two following situations:
buffers are becoming major bottlenecks for today's high-end 1. The wide adoption of input-queued (IQ) switches relies on
routers. In particular, router buffers are required to have both
high speed and large capacities, which are hard to build with the virtual-output-queuing (VOQ) technique, where an in-
current single memory technology, such as SRAM or DRAM. A put buffer maintains N packet queues corresponding to N
general approach is to make a combination of the SRAM and outputs [1].
DRAM and exploit advantages from both. The main obstacle is to 2.Even in the output side buffers, in order for the router to
find a way matching the speed gap between them. And the re- provide.quali~-~f-service (QoS) packets are normally ar-
quirement to maintain multiple flows in the system further com- ranged In theIr Independent flow queues to reduce possi-
plicates the problem. ble interference between each other [5].

In this paper, we first investigate previous solutions that use Each queue itself may be as simple as first-come-first-served
different access granularities to match the speed gap. We point (FCFS). However, when the flow number increases, queue
out their intrinsic scaling problems when the number of flows
increases. Then, we propose to use parallelism to match the speed management becomes a challenging task for buffer designers.
gap. Numerical studies and simulations both show that our pro- We summarize the issues in the router buffer design as fol-
posal can theoretically support any number of flows in the router lowing: The high-performance router buffers require both fast
with just little SRAM under practical traffic. In addition, the speed and large capacity, which are not met by current avail-
memory management algorithm is also more scalable compared able single SRAM or DRAM In addition, the router buffers are
to those in previous solutions. required to maintain multiple FCFS queues in the system.

B. Related work

. To simultaneously meet these two stringent requirements of
hIgh speed and large capacity, a natural idea is to combine the
SRAM and DRAM and exploit the individual advantages from
both. The general approach is to use the SRAM in the head
and tail for fast reading and writing and the DRAM in the
middle for majority buffering. Packets shuttle between the
SRAM and DRAM under the control of some memory
management-algorithm (MMA). One key function of the
MMA is to find ways to match the access speed gap between
the SRAM and DRAM so that they can co-work smoothly.

Along this idea, the basic Hybrid SRAM/DRAM (HSD) ar
chitecture was first introduced by Iyer [6] and further ex
plained in detail in [7]. Fig.l shows the HSD system, where
two small SRAM hold the head and tail of a flow queue and a
DRAM maintains its middle part. All the SRAM and DRAM
ind.ividually maintain Q separate flow queues. When a packet
~rflves a~ the HSD, it i.s.immediately written to its flow queue
In the taIl SRAM, waItIng for the MMA to transfer it to its
corresponding queue in the DRAM. The key constraint of the
~A is that it always transfers a batch of b packets every
tIme, never smaller, from a SRAM queue to the corresponding
DRAM queue. Similarly, in the head the MMA always trans
fers a batch of b packets, never smaller, from a DRAM queue
to the corresponding SRAM queue to fulfill the outside arbiter
requests. These b packets should be from the same queue so
that they can be accessed simultaneously.

The parameter b is normally configured to be the ratio of
the access time of DRAM to that of SRAM, which is around
10 (= 40ns /4ns) and can be regarded to be a constant with
current technology. For the simplicity of analysis, we define
one time slot to the access time of SRAM. Therefore, the ac
cess time to DRAM is b time slots and each transmission in
the above MMA costs b time slots. In the HSD, the DRAM is
always accessed with b packets from a same queue in b time

978-1-4244-1982-1/08/$25.00 0008 IEEE 104

C. Scaling problems ofthe HSD and our motivation

In general, router buffer scaling problem can be investigated
in two dimensions: line rate scaling and flow number scaling.
When the line rate is slow, simply using DRAM is enough.
However, when the line rates scales, the faster SRAM has to
be introduced, thus comes the HSD.

However, given current fabrication limitations on SRAM (a
few MB) and a normal packet size of 1000 bytes, a simple cal
culation can show that the basic HSD system is only feasible
with less than a thousand flows. Even with the interleaved
DRAM banks, the HSD can hardly support flows over ten
thousand. This flow number scaling limitation is simply due to
the fact that the required SRAM in the HSD is O(Qb) , which
increases linearly with the number of flows Q.

Another problem with scaling Q is the memory manage
ment algorithm. The ECQF- or EFQF-MMA in the HSD re
quires selecting the most critical/full queue, which involves
sort-related operations. When Q increases, these selecting
operations certainly become unfavorable in practical hardware
implementations.

In this paper, we plan to design buffers supporting a large
number of flows for next generation routers. Therefore, we
concern these scalability issues foremost. In detail, we define
the scalability problem as following:

1. The buffer design should minimize the SRAM require
ment while providing reasonable performance guarantees
to packets. In particular, the SRAM size is expected not to
scale with Q.

2. The memory management algorithm (MMA) should be
simple to implement and is expected not to scale with Q,
since it has a limited time to be executed.

D. Paper Contributions

The rest of this paper is organized as follows. In section II,
we show that it is HSD's intrinsic limitation that the required
SRAM scales linearly with Q. We then propose to use paral
lelism to scale the HSD and call the resulted system PHSD.
We analyzed the worst-case and average performance of
PHSD, which outperform HSD significantly. We carry out
extensive simulations in section IV and discussions in section
V. Then we conclude the paper.

II. INTRINSIC LIMITATIONS OF THE HSD

The authors in [6] derived the worst-case performance of the
HSD, that is, the maximum SRAM requirement and maximum
packet delay under any possible traffic conditions. In practice,
however, we are more interested in its average performance,
which can help us better understand the system. In this section,
we put the HSD under practical traffic and analyze its average
performance. By saying practical traffic, we make the follow
ing weak assumptions to the traffic:

1. All the Q jlows are independent ofeach other.
2. Eachjlow is a stationary and ergodic process.
These are reasonable and practical assumptions, since in re

ality one flow source normally does not interfere with other
sources. A large range of traffic conforms to the stationary and
ergodic properties, such as uniform, hot-spot, ... , and even the
bursty traffic in the long term. Please also note that all the
flows do not necessarily have identical distributions.

To analyze the SRAM requirement, we assume an infinite
SRAM and perform numerical study on its average occupation.
Focus on HSD's tail part in Fig.!. The EFQF-MMA works as
following. The tail SRAM keeps receiving packets from out
side and puts them in their flow queues. The EFQF-MMA
waits until one flow queue has reached b packets, and then
transfers the block of b packets as a whole from that queue to
the DRAM via just one write operation. This operation costs b
time slots.

Theorem 1: In the HSD, the average occupation of the tail
SRAM with EFQF-MMA is at least Q(b - 1) / 2, and the aver
age packet delay in the head SRAM with ECQF-MMA is at
least Q(b - 1) /2 time slots, with traffic observing the above
two practical assumptions.
Proof: The tail SRAM should be sized to hold the residual
packets that are still waiting for the EFQF-MMA for each of
the Q flows. Suppose the EFQF-MMA has run for a suffi
ciently long time, and each flow i has Pi (1 ~ i ~ Q) packets
that have arrived to the system. Then, each Pi can be repre
sented as following:

P· == b . m· + q. (0 < q. < b)t 1, Z - Z

Head
SRAM

b pkts

rfj 11lll
DRAMTail

SRAM

:::::::J 1

==rrIJ 2 bArriving
packets

~V...----........:I......" Q ! =:::mQ requests

b pkts EFQF-MMA ECQF-MMA

Fig. 1: The basic HSD architecture

slots. We can say that the DRAM's access granularity is b
packets, while the SRAM's access granularity is one packet
(one-by-one packets from outside). Basically, different access
granularities to the SRAM and DRAM help match the access
speed gap between them so that they can co-work smoothly.

Intuitively, since the MMA always transfers b packets in a
batch, the SRAM should be sized to absorb the different
granularities. In particular, the head SRAM should be sized to
hold temporary packets that are not required by the outside
arbiter but read out from the DRAM in batches. The tail
SRAM should also be sized to hold packets that are still wait
ing to accumulate up to b packets. The authors in proposed an
earliest-critical-queue-first (ECQF) MMA to schedule packets
in the head SRAM. The ECQF-MMA uses a look-ahead
scheme to replenish the queues. It waits and looks sufficiently
ahead at many packet requests from the outsider arbiter, then
combines this information with the packets already in the head
SRAM and calculates which queue will become the first to be
empty under the current sequence of requests. That queue is
named earliest critical queue. The ECQF-MMA chooses the
most critical queue and replenishes it by transferring b packets
from the corresponding queue in the DRAM.

The HSD architecture is symmetric. A similar MMA can be
used between the tail SRAM and the DRAM. The tail MMA
just waits until an earliest queue has accumulated b packets
and then transfers them in a batch to the DRAM queues. The
tail MMA can be called earliest-full-queue-first (EFQF) MMA.

It is proved that the worst-case requirement for the SRAM is
the capacity of holding Q(b - 1) packets and the possible de
lay a packet may experience is at most Q(b - 1) + 1 time slots
under the continuously incoming traffic assumption.

105

This representation tells us that for each flow i, there are at
least qi packets residing in the tail SRAM, since the EFQF
MMA only transfers packets in a batch of b packets.

Therefore, the tail SRAM should be sized at least to hold
these L~l qi residual packets.

Write L~l qi in another way:

L~lqi == L~lIA(qi == 1).1 + L~lIA(qi == 2)·2 + ...
+ L~lIA(qi == b -1)· (b -1)

== L~:i L~l IA(qi == j) . j (*)
The IA() is an indicator function defined as following:

{

1 if x is true

IA (x) == ° if x is false

Each qi ranges between [0, b - 1]. Since all the flows are
independent of each other and each flow is stationary and
ergodic , all their residuals qi should be uniformly distributed
across the interval [0, b - 1], which indicates

E[L~l I A (qi == j)] == Q / b, 'tIj
Therefore, by taking expectations of both sides in (*), we

can get:

E[L~lqi] == L~:iE[L~lIA(qi == j)]. j

== Q / b . L~:i j

== Q/ b . (b . (b - 1)) / 2
== Q(b -1)/2

That is to say, the expected number of packets in the tail
SRAM to initiate a transmission is at least Q(b - 1) / 2 , which
is half of its maximum boundary requirement.

Similarly, in the head SRAM the ECQF-MMA should look
ahead expected at least Q(b - 1) / 2 packet requests to issue a
transmission from the DRAM. Therefore, the average delay a
packet may experience is at least Q(b - 1) / 2 time slots. •

We can see that even with practical traffic, the SRAM occu
pation in the HSD still scales linearly with the number of
flows Q . By carefully investigating the operations in the
ECQF- and EFQF-MMA and the proof above, we can intui
tively see that it is the different access granularities that build
up the SRAM occupation. In particular, different access
granularities make the HSD non-work-conserving. That is,
packets may wait in the SRAM for the MMA to accumulate b
packets in one queue. All flows may experience non-work
conserving and the SRAM should hold all the waiting packets
for each flow. Consequently, the SRAM should be sized with a
factor of the flows number, which is at least linear with Q .

Parallelism is a natural approach used to fill in the speed
gaps. However, for router buffers a key issue is to maintain as
many as Q FCFS flows. In this section, we first describe the
parallel hybrid SRAM/DRAM architecture for scaling router
buffers. Then, we perform numerical studies on it, including
the worst-case performance and expected performance under
practical traffic conditions.

A. The PHSD and the RRSD-MMA

We use Fig.2 to illustrate the PHSD system. Basically, it
consists of k (2:: b) parallel subsystems, each one being a hy
brid SRAM/DRAM structure. However, there are still differ
ences between the subsystems here and the basic HSD system:
1) In the subsystem in Fig.2, only the DRAM maintains Q
FIFO flow queues, while each SRAM maintains just one single
FIFO queue according to a packet's arriving order; 2) Packet
transmission between the SRAM and DRAM is in one-by-one
mode, not b packets in a batch as in the basic HSD system.
That is to say, the access granularity of the DRAM is also one.
We call this architecture parallel hybrid SRAM/DRAM,
namely PHSD.

We design a RRSD-MMA for the PHSD system. To explain
how it works, we focus on the tail part. It has two components:
the per-jlow round-robin (RR) dispatcher and the SD trans
feror between the SRAM and DRAM. They work as follows:

The per-flow round-robin (RR) dispatcher
When a packet comes to the memory system, the per-flow

RR dispatcher first determines which subsystem the packet
should go according its flow 10 and the round-robin rule, and
then sends it to the tail SRAM in the subsystem. The round
robin rule is following: if a packet is the i-th packet in a flow,
then it should be dispatched into the j-th subsystem, where
j == i mod k .The dispatcher finishes writing to a SRAM in

just one time slot.
The SD transferor between the SRAM and DRAM
The SO transferor keeps transferring the head packet of the

SRAM one-by-one into the corresponding flow queue in the
DRAM whenever the SRAM is non-empty. The SO transferor
completes a packet transfer in b time slots.

The PHSO architecture is symmetric. A similar MMA can
be employed in the head part. If we view the continuous out
side requests as virtual packets and buffer them in the head
SRAM. Transferring packets from the DRAM to the head
SRAM can be translated into transferring virtual packets from
the head SRAM into the DRAM. It is the same as the tail
MMA and shares the same performance analysis. Therefore, in
the following, we only focus on analyzing the tail MMA
unless otherwise stated.

III. THE PARALLEL HYBRID SDRA/DRAM (PHSD) AND THE
RRSD-MMA

We have seen in the previous section that although different
granularities help the HSD match the access speed gap be
tween SRAM and DRAM, they also make the system non
work-conserving. This fact poses an intrinsic limitation for the
HSD's SRAM to scale linearly with Q. We break this non
work-conserving limitation in our proposed buffer architecture.
In particular, we employ parallel DRAM to match up the speed
gap and force the same access granularities in the MMA, i.e.,
one packet per access to the SRAM and one packet per access
to the DRAM as well.

Incomin
packets

Tail ~;=~~~~1D-~-:~I-~ Head

/~-----------------~ ~

~~:
! . !
! i i

I subsystem k - - - - - - - - - - - I

~s D s I
I 7- '\' I

~--- ---------\---~
SO transferor OS transferor

Fig. 2: The PHSD architecture

106

The PHSD is a very simple system. It maintains the flows
queue information while breaks the non-work-conserving limi
tations as well. That is to say, whenever there are packets (re
quests) in the tail (head) SRAM, the SD (DS) transferor is
busy transferring packets between the SRAM and DRAM.
This will save a lot space in the SRAM.

In addition, the RRSD-MMA is as simple as having 0(1)
complexity. This is because the PHSD is a distributed, asyn
chronous system and complexity is amortized into every
packet. While the HSD system can be viewed as a centralized
synchronous system, where a central MMA should determine
which queue among Q flows can be selected and then transfer
b packets from it synchronously.

B. Worst-case performance ofthe PHSD with RRSD-MMA

We first analyze the worst-case performance of the PHSD,
Le. the maximum SRAM requirement and packet delay under
any traffic conditions.

We can note that the speed of the SD transferor is (b times)
slower than that of the per-flow RR dispatcher. Although the
long-term speed of the per-flow RR dispatcher feeding the
subsystem should be divided by k, the SRAM should still be
sized to absorb the bursty packets from different flows that
simultaneously feed the same subsystem. Similarly in the
PHSD head, the SRAM should be sized to buffer bursty re
quests from the outside arbiter and the SRAM occupation dic
tates the delay a packet request may experience.

We define an SRAM's critical period as following:
Definition: A time period is called a critical period for an

SRAM, if in the beginning of this period the SRAM starts ac
cumulating packets and does not ever become empty in this
period. The critical period is measured by T time slots. T
can be infinity if the SRAM occupation never becomes O.

Theorem 2: For an SRAM A, in any critical period of T ,
the occupation S in the SRAM satisfies the following:

S S; Q(1 -1/ k) + T / k - T / b

Proof: In the period of T , there are at most T packets arriv
ing at the per-flow RR dispatcher. They belong to Q flows
individually. We assume that qi(1 S; i S; Q) packets belong to
the i-th flow. Therefore

L:~1 qi == T
In particular, each qi can always be represented by

qi == ni . k - mi(O S; mi S; k - 1)

This form can tell us that at most ni packets from the i-th
flow will go to the SRAM A.

Combining the above two equations, we can get

L~l ni . k - L~l m i == T

Therefore,

~Q _ T +L~lmi
~i=lni - k

Since 0 S; mi S; k - 1,

L~l n
j

:::; T + Q~k - 1)

==Q(I-I/k)+T/k
According to the definition of the critical period, the SRAM

A is non-empty during the T time slots, which indicates that
the SD transferor has transferred T / b packets into the
DRAM.

Therefore, the maximum occupancy of the SRAMA is:

S == L~l ni - T / b

S; Q(1 - 1/ k) + T / k - T / b

•
We can immediately find two properties from this theorem.
1. If k < b, Q(1 - 1/ k) + T / k - T / b can be infinite if T

goes to infinity. This means that the occupancy S of
SRAM A is unbounded.

2.If k ~ b, then Q(I-I/ k) + T / k - T / b S; Q(1 -1/ k).
This means that the occupancy S of SRAM A is bounded
by Q(1 - 1/ k) .2

We can then have the following corollary.

Corollary: In the PHSD with RRSD-MMA, if k ~ b, then
the total SRAM size in the tail (head) is bounded by Q(k - 1)
and the packet delay is bounded by bQ(1 - 1/ k) .

Proof: From above property 2, we can see that if k 2:: b,
each SRAM occupation is bounded by Q(1 - 1/ k). There are
k SRAM in total. Therefore, the total SRAM required in the
tail of the PHSD is:

k·Q(I-1/k)

== Q(k -1)
The same SRAM requirement holds in the head ofPHSD.
For the packet delay analysis in the head, the maximum de

lay a packet request may experience happens when the outside
scheduler issues the request to the head SRAM, and that re
quest queues in the Q(1 - 1/ k) position. It will cost the DS
transferor b· Q(1 - 1/ k) time slots to service that request,
since the DS transferor can only read out one packet in b time
slots. Therefore, the maximum delay a request may have is
bQ(1 - 1/ k) time slots.

•
To be comparable to the HSD, we set k == b. Therefore, in

the PHSD, the total SRAM size in the tail (head) is bounded
by Q(b - 1) , and the request delay is also Q(b -1) , which are
the same as those in the HSD.

We note here that his worst case can hardly happen; it re
quires all the Q flows synchronize perfectly (Q flows feeding
the same SRAM simultaneously all the time), which is of very
little possibility when Q is large. However, it is very difficult
to exactly analyze the average performance of PHSD, we per
form extensive simulations in the next section to test the
SRAM occupation and packet delay. We can see that they are
at the order of O(1n Q) .

IV. SIMULATIONS

We perform extensive simulations to both the HSD and
PHSD systems. We test the maximum SRAM occupation and
average packet delays in both systems with regard to the in-

2 To be accurate, when k > b , this upper bound Q(l - 1/ k) cannot be
achieved. The reason is that this upper bound Q(l - 1/ k) can only be
achieved when T = 0 . However, if T = 0 , the occupancy of SRAM A is O.
Nevertheless, Q(l - 1/ k) serves as a good and sufficient upper bound.

107

-.- k=b+ }-__a__ k=b+2 k=b+ 3
)(k=b+4 -------- k=b+5 --.- k=b+6

~k=b+7 --k=b+8 - k=b+9

~~

----.- Max. SRAM occupation

-D-- Ave. packet delay (time slots)

500

1000

1500

2000

2500

160

c 140

~ 120
ra
g-100

~ 80o
:E 60

~ 40 lM!;;;;~t!tit!~~§j.~~'1
en 20

O-+-r-_,__,__.____r---.--r___r_r~_r_,...,-r--r-.,____r_.____r__._____r_,__,__.____r___.__r___r_r____,__,__,

100 1300 2500 3700 4900 6100 7300 8500 9700

Number of flows (Q)

Fig. 4: Maximum SRAM occupation in PHSD when k > b

60000

90000 ----.- max SRAM occupation

--6- average packet delay (time slots)

75000

Fig.5: PHSD performance with decreasing traffic loads

O+-~~::::JlI===Q::==O=~I:I=====tI======G==O==O===--D

100% 95% 90% 85% 800/0 75% 70% 65% 60% 55% 50%

Traffic Loads

45000

Fig.6: HSD performance with decreasing traffic loads

30000 -+--__r------,------,-------.-----,.----__r------,--r-----,-------,

100% 95% 90% 85% 800/0 75% 700/0 65% 60% 55% 50%

Traffic Loads

creasing number of flows Q . SRAM occupation in the PHSD
adds up from all the k SRAM. We also test both systems un
der different traffic load situations. In addition, we test the
impact of increasing the parameter k in the PHSD system.

In all the simulations, we set b == 10 and Q ranges from 5
to 10000. We set k == b in all simulations otherwise stated
explicitly. All simulations run for 109 time slots. For each case
of Q, we repeat the simulation for 100 times and take the
maximum of all 'maximum SRAM occupation' and 'average
packet delay'. The SRAM occupation is measured by the
number of packets it holds. The packet delay is measured by
time slots between the time when the packet is requested by
outside arbiter and the time when it actually leaves the system.
For the purpose of comparison, in every simulation we feed
both the HSD and PHSD system with exactly the same traffic.

10000 ..

9500 !
9000 ;

8500 !
8000 I
7500 I
7000 fI

6500 ,

6000 I
, x rvlax. SRAM occupation in A-ISD

5500 ,
5000 : 6. Ave. packet delay in A-ISD (tirre slots)

4500 r + rvlax. SRAM occupation in HSD

4000 ! D Ave. packet delay in HSD (tirre slots)
3500 I

-O(LnQ)
3000 r
2500 f x

2000 :

1500 ;

1000 i
500 'taw 2 • Jun.........

0, i I

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ N ro v 0 ~ N ro v 0 ~ N ro
~ ~ N 0 ro ~ M 0 ro ~ M ~ ro

~ N M M V ~ ~ ~ ~ ro m m

Num ber of flows (Q)

Fig.3: Performance ofHSD and PHSD with increasing Q

A. SRAM occupation and packet delays

We first test both systems under uniform traffic and unbal
anced traffic. For the uniform traffic, incoming packets are
uniformly distributed across all the Q flows. For the unbal
anced traffic, 900/0 traffic aggregates to only 10% of the flows.
We have got nearly the same results for the uniform and un
balanced traffic, since they both conform to the stationary and
ergodic properties. For the sake of limited space, we only
show the results under uniform traffic in Fig.3.

We can see from the figure that in the HSD both the maxi
mum SRAM occupation and average packets delay scale line
arly with Q . The SRAM occupation quickly scale beyond
10000 packets when Q reaches 2000. With a normal packet

size of over 1000 bytes, a SRAM size of a few MB can hardly
hold over 10000 packets. While in the PHSD, both the maxi
mum SRAM occupation and average packet delay scale only
with a O(lnQ) speed. Even when Q reaches 10000, the
SRAM occupation is still under 3000 packets. This is the result
with k == b .

B. Increasing k in the PHSD

We test the PHSD performance with increasing k . From the
simulation results shown in Fig.4 and comparing them to those
in Fig.3, we can find that the maximum SRAM occupation in
the PHSD decreases dramatically when we increase k , even
when k is only one larger than b. In addition, when k > b,
the maximum SRAM occupation remains nearly unchanged
when Q increases.

We can also find in Fig.4 that the marginal gain from further

108

increasing k gets smaller. This fact suggests that in practice it
is enough to set k to be just one or two larger than b. This
also gives incentives for network operators to minor over
provisioning.

C. Different traffic loads

We also test the performance of both systems under varying
traffic loads. The simulation results are shown in Fig.5 and 6.
Fig.5 shows that for the PHSD system, the SRAM occupation
decreases significantly as the traffic loads decreases.

However, for the HSD system in Fig.6, the SRAM occupa
tion is kept nearly unchanged even when the traffic load de
creases to 50%. For the packet delays, they even surprisingly
increase when the traffic load decreases. Intuitively, in light
traffic loads, the EFQF- or ECQF-MMA still needs to wait to
gather b packets in each flow queue to initiate a transmission.
The lighter traffic does not necessarily decrease residual pack
ets in each flow queue. Therefore, the SRAM occupation sus
tained by the HSD essentially does not change. Consequently,
this fact also causes every packet tending to waiting in the
SRAM for a longer time with a lighter traffic. Therefore, the
average packet delay increases when the traffic load decreases.

V. DISCUSSIONS

A. Other practical advantages ofPHSD over HSD

When we design router buffers in literature, we normally as
sume the traffic load to be heavy. In fact, as also stated in [6],
the HSD was designed under the assumption of continuously
incoming packets for its MMA to work desirably. However, in
practice, more valuable questions are: what if the traffic is
light, or varying? We discuss about these two questions.

The PHSD removes the starvation problem in light traf
fic. It is easy to see a flow in the HSD may be starving if it has
less than b packet requests in a certain period. This is due to
that the DRAM access granularity in ECQF-MMA is fixed to
be as large as b packets. While in the PHSD, the DRAM ac
cess granularity is one packet, which means that even one
packet request in a flow can still initiate a transmission from
the DRAM.

The PHSD responds promptly to varying traffic. We
have seen from the simulations that the HSD performs poorly
under light traffic loads. This is due to the fact that the ECQF
MMA is non-work-conserving, which makes it non-prompt to
light traffics, or sluggish to busty traffic. On the other hand,
the RRSD-MMA in PHSD is work-conserving and more
prompt to light traffic. As we can see from Fig.6, the packet
delay decreases significantly when the traffic load is below
95%. This is normal behavior of a network component, based
on which network operator can improve the performance sig
nificantly by over-provisioning. While in the HSD system,
there is no way to improve the performance by any over
provisioning.

B. Out-of-sequence problem in the PHSD

As we have seen above, besides significantly reducing the
SRAM requirements, the PHSD is also more desirable in prac
tice with varying traffic conditions.

However, these advantages do not come for free. They are at
the cost of the possibility of packets 'out-of-sequence' problem.
That is to say, for a flow, some packet may respond to the arbi-

ter earlier than its preceding ones, since they are dispatched
into different subsystems and each may experience different
delays. While in the HSD, packets sequence is strictly main
tained, since all packets have the same route to the final arbiter.

This is similar to the load-balanced switches proposed by
Chang [8]. However, we argue that the out-of-sequence prob
lem is much less severe in the PHSD. The load-balanced
switches also employ round-robin to dispatch incoming pack
ets, there are N sources of packets, each one with N VOQ.
This fact makes the out-of-sequence order amount to O(N2

) •

While in the PHSD system, there is only one source of packets
and the worse-case out-of-sequence order is O(Q) (Q == N
for the VOQ). From our analysis, we can see that in practice,
the out-of-sequence order is only O(ln Q) . A simple way to
solve this problem is to use a sorting memory in the arbiter. Or,
we can design alternative MMA to take considerations of
packets order. However, that complicates the MMA. We will
investigate this kind of MMA in our future work.

VI. CONCLUSIONS

We build high performance router buffers in this paper. In
particular, we address the scaling problem in the buffers with
regards to the increasing number of flows. It is proven by our
numerical model that the HSD in literature is intrinsically un
scalable to support large number of flows. We then propose
the PHSD to scale it.

In summary, the PHSD is a parallel, distributed, asynchro
nous, and work-conserving system, while the HSD can be
comparably regarded as a sequential, centralized, synchronous,
and non-work-conserving system. From both the analysis and
simulations, we show that the PHSD out-performs HSD sig
nificantly in terms of the SRAM requirement and packet delay.

In particular, when we set k > b in the PHSD, the SRAM
size and packet delay remains as a small constant under practi
cal traffic, however large the Q is. This makes the PHSD able
to virtually support any number of flows. We believe it is a
promising solution for the next generation router buffers.

REFERENCES

[1] N. McKeown, "The iSLIP scheduling algorithm for input-queued
switches," IEEE/ACM Transactions on Networking, vol. 7, pp.
188-201,1999.

[2] F. Wang and M. Hamdi, "Analysis on the Central-stage Buffered
Clos-network for packet switching," in Proceedings ofIEEE In
ternational Conference on Communications, Seoul, Korea, 2005.

[3] Samsung semiconductor, Available online:
..http://www.samsung.com/Products/Semiconductor/Products.ht

m"
[4] 1. L. Hennessy and D. A. Patterson, Computer Architecture: A

Quantitative Approach: Morgan Kaufmann, 2006.
[5] M. Shreedhar and G. Varghese, "Efficient fair queuing using

deficit round robin," in Proceedings ofACM SIGCOMM, 1995.
[6] S. Iyer, R. R. Kompella, and N. McKeown, "Analysis of a mem

ory architecture for fast packet buffers," in Proceedings ofIEEE
Workshop on High Performance Switching and Routing, 2001,
pp. 368-373.

[7] S. Iyer, R. Kompella, and N. McKeown, "Designing Buffers for
Router Line Cards," Technical Report TR02-HPNG-031001,
Stanford University, 2002.

[8] C. S. Chang, D. S. Lee, and Y. S. Jou, "Load balanced Birkhoff
von Neumann switches, part I: one-stage buffering," Computer
Communications, vol. 25, pp. 611-622, 2002.

109

